nlp.pl

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
% Natural Language Parser for Scribbler II Robot
% by Justin Mangue, 2013
%
% Uses DCG grammar parsing to parse natural language input into Python code, to be executed on a Scribbler II robot.
%
% References used:
% * "The Art of Prolog", Sterling & Shapiro, 1986.
 
% ParseToCode is the main routine.  Takes a sentence and converts it to a list of executable python code.
% Call with parseToCode([sentence,as,a,list],Status,Code).
parseToCode(Sentence, Status, CodeListOut) :-
    compound_sentence(ParseList, Sentence, []),
    Status = valid,
    generate_code_list(ParseList, [], CodeListOut),
    !. 
     
parseToCode(Sentence, Status, CodeOut) :-
    + compound_sentence(_, Sentence, []),
    Status = invalid_sentence,
    CodeOut = 'null',
    !.
     
%%% GRAMMAR DEFINITIONS %%%
     
% Compound Sentence is the top level.  Consists of an optional address statement followed by one or more simple sentences joined by a connective.
compound_sentence(Compound) -->
    optionally_address(robot),
    simple_sentence(Command),
    connective(and),
    compound_sentence(Sentence),
    { append([Command], [Sentence], Compound_NotFlat) },
    { flatten2(Compound_NotFlat, Compound) }.
 
compound_sentence(Command) -->
    optionally_address(robot),
    simple_sentence(Command).
     
% A simple sentence is a command phrase, possibly followed by an optional repetition clause.
simple_sentence([loop(C,T)]) -->
    command_phrase(C),
    (to_number(T), [times] ; to_number_eng(T)).
     
simple_sentence([Simple]) -->
    command_phrase(Simple).
   
% Command phrases are the basic command-level structure.  Most consist of an action and some sort of argument.
command_phrase(move(D,S)) -->
  action(go),
  direction(D),
  optional(for),
  unit_to_seconds(S).
   
command_phrase(move(D,S)) -->
  action(go),
  unit_to_seconds(S),
  direction(D).
   
command_phrase(move(forward,S)) -->
  action(go),
  unit_to_seconds(S).
   
command_phrase(move(D,3)) -->
  action(go),
  direction(D).
   
command_phrase(turn(D,S)) -->
  action(turn),
  optional(to),
  (optional(the) ; optional(your)),
  direction(D),
  unit_to_seconds(S).
 
command_phrase(turn(D,S)) -->
  action(turn),
  optional(to),
  (optional(the) ; optional(your)),
  direction(D),
  { S is 90*(3.25 / 360) }.  % 90 degrees by default
   
command_phrase(turn(right,D)) -->
  action(turn),
  direction(around),
  { D is 180 * (3.25 / 360) }.  % 180 degree turn
   
command_phrase(turn(Dir,D)) -->
  action(spin),
  direction(around),
  optional(to),
  (optional(the) ; optional(your)),
  direction(Dir),
  { D is 3.25 }.  % 360 degree turn
   
command_phrase(turn(right,D)) -->
  action(spin),
  direction(around),
  { D is 3.25 }.  % 360 degree turn
     
command_phrase(pic(Mode)) -->
    action(take),
    adposition(a),
    photomode(Mode),
    object(picture).
     
command_phrase(pic(0)) -->  % b&w pic by default, for speed reasons
    action(take),
    adposition(a),
    object(picture).
     
command_phrase(wait(S)) -->
    action(wait),
    optional(for),
    unit_to_seconds(S).
     
command_phrase(wait(3.0)) -->
    action(wait).  
     
command_phrase(beep) -->
    action(beep).
     
command_phrase(moonwalk(S)) -->
    action(moonwalk),
    optional(for),
    unit_to_seconds(S).
     
command_phrase(moonwalk(4.0)) -->
    action(moonwalk).
     
command_phrase(move_until_wall(D)) -->
    command_phrase(move(D,_)),
    condition(until),
    [you],
    condition(encounter),
    object(wall).
     
% Vocabulary/synonym definitions
     
action(go) --> [go] ; [move] ; [drive] ; [roll] ; [scoot].
action(turn) --> [turn] ; [rotate] ; [swivel].
action(spin) --> [spin].
action(take) --> [take] ; [obtain] ; [get] ; [snap].
action(wait) --> [wait] ; [pause] ; [stop].
action(beep) --> [beep].
action(moonwalk) --> [moonwalk].
 
direction(forward) --> [forward] ; [forwards] ; [ahead] ; [up].
direction(backward) --> [backward] ; [backwards] ; [back].
direction(left) --> [left] ; [counter-clockwise] ; [counter],[clockwise].
direction(right) --> [right] ; [clockwise].
direction(around) --> [around] ; [in],adposition(a),[circle].
 
adposition(a) --> [a] ; [one].
 
condition(until) --> [until].
condition(encounter) --> [encounter] ; [reach] ; [sense] ; [hit].
 
photomode(0) --> [grayscale] ; [greyscale] ; [gray] ; [grey] ; [black],[and],[white] ; [black],[&],[white].
photomode(1) --> [color].
 
object(picture) --> [photo] ; [picture] ; [pic] ; [snapshot].
object(wall) --> [a],[wall] ; [the],[wall] ; [an],[obstacle] ; [something].
 
pronoun(robot) --> [robot] ; [scribbler].
 
connective(and) --> [and] ; [then] ; [comma] ; [and], [then] ; [comma], [then] ; [comma], [and], [then].
 
% Optional form of address
optionally_address(robot) -->
    (optional(robot) ; optional(scribbler)),
    optional(comma),
    optional(please).
     
% Allow a DCG word to be optional
optional(X) --> [X] ; [].
 
% Number parsing predicates
% English number recognition from 0.0 - 9999.9
 
to_number(N) --> num(N1), [point], digit(N2), { N is N1 + (0.1 * N2) }.
to_number(N) --> num(N).
 
to_number_eng(1) --> [once].
to_number_eng(2) --> [twice].
to_number_eng(3) --> [thrice].
 
num(0) --> [zero].
num(N) --> xxxx(N).
num(N) --> xxx(N).
num(N) --> xx(N).
num(N) --> digit(N).
 
num(N) --> [N], { number(N) }.
 
xxxx(N) --> digit(D), [thousand], xxx(N1), { N is D*1000+N1 }.
xxx(N) --> digit(D), [hundred], rest_xxx(N1), { N is D*100+N1 }.
 
rest_xxx(0) --> [].
rest_xxx(N) --> [and], xx(N).
rest_xxx(N) --> xx(N).
 
xx(N) --> digit(N).
xx(N) --> teen(N).
xx(N) --> tens(T), rest_xx(N1), { N is T+N1 }.
 
rest_xx(0) --> [].
rest_xx(N) --> digit(N).
 
digit(1) --> [one].
digit(2) --> [two].
digit(3) --> [three].
digit(4) --> [four].
digit(5) --> [five].
digit(6) --> [six].
digit(7) --> [seven].
digit(8) --> [eight].
digit(9) --> [nine].
 
teen(10) --> [ten].
teen(11) --> [eleven].
teen(12) --> [twelve].
teen(13) --> [thirteen].
teen(14) --> [fourteen].
teen(15) --> [fifteen].
teen(16) --> [sixteen].
teen(17) --> [seventeen].
teen(18) --> [eighteen].
teen(19) --> [nineteen].
 
tens(20) --> [twenty].
tens(30) --> [thirty].
tens(40) --> [forty].
tens(50) --> [fifty].
tens(60) --> [sixty].
tens(70) --> [seventy].
tens(80) --> [eighty].
tens(90) --> [ninety].
 
% Scribbler Unit conversions
% All of the Myro commands for Scribbler are expressed in seconds, so conversions of other unit types to seconds are required.
 
% Seconds -> Seconds
unit_to_seconds(S) -->
    to_number(S), { + S = 1 }, [seconds] ;
    to_number(S), { S = 1 }, [second].
     
% Milliseconds -> Seconds
unit_to_seconds(MS) -->
    to_number(S), { + S = 1 }, { MS is (S / 1000) }, [milliseconds] ;
    to_number(S), { S = 1 }, { MS is (S / 1000) },[millisecond].
 
% Feet -> Seconds
unit_to_seconds(S) -->
    to_number(Feet), { + Feet = 1 }, { S is Feet * 2.05 }, [feet] ;
    to_number(Feet), { Feet = 1 }, { S is 2.05 }, [foot].
 
% Inches -> Seconds
unit_to_seconds(S) -->
    to_number(Inches), { + Inches = 1 }, { S is Inches * (2.05 / 12) }, [inches] ;
    to_number(Inches), { Inches = 1 }, { S is (2.05 / 12) }, [inch].
     
% Degrees -> Seconds
unit_to_seconds(S) -->
    to_number(Degrees), { + Degrees = 1 }, { S is Degrees * (3.25 / 360) }, ([degrees] ; [º]) ;
    to_number(Degrees), { Degrees = 1 }, { S is (3.25 / 360) }, ([degree] ; [º]).
     
%%% CODE GENERATION %%%
% The top level structure is a code list, which is a list of one or more code fragments to be executed.
% This part is pretty messy, but is needed to handle passing instructions back to Python from Prolog.
 
generate_code_list([], CodeList, CodeList).
generate_code_list([H|T], CodeList, CodeListOut) :-
    generate_code(H, CodeLineOut),
    append(CodeList, CodeLineOut, NewCodeList),
    generate_code_list(T, NewCodeList, CodeListOut).
 
generate_code(move(forward,S), CodeOut) :-
    string_to_atom(Keyword, forward),
    CodeOut = [[Keyword,1.0,S]], !.
 
generate_code(move(backward,S), CodeOut) :-
    string_to_atom(Keyword, backward),
    CodeOut = [[Keyword,1.0,S]], !.
 
generate_code(move(left,S), CodeOut) :-
    string_to_atom(Keyword1, turnLeft),
    string_to_atom(Keyword2, forward),
    Ninety is 90*(3.25 / 360),
    CodeOut = [[Keyword1,1.0,Ninety],[Keyword2,1.0,S]], !.
     
generate_code(move(right,S), CodeOut) :-
    string_to_atom(Keyword1, turnRight),
    string_to_atom(Keyword2, forward),
    Ninety is 90*(3.25 / 360),
    CodeOut = [[Keyword1,1.0,Ninety],[Keyword2,1.0,S]], !.
     
generate_code(turn(left,S), CodeOut) :-
    string_to_atom(Keyword, turnLeft),
    CodeOut = [[Keyword,1.0,S]], !.
     
generate_code(turn(right,S), CodeOut) :-
    string_to_atom(Keyword, turnRight),
    CodeOut = [[Keyword,1.0,S]], !.
     
generate_code(wait(S), CodeOut) :-
    string_to_atom(Keyword, wait),
    CodeOut = [[Keyword,S]], !.
     
generate_code(pic(Mode), CodeOut) :-
    string_to_atom(Keyword, takePhoto),
    CodeOut = [[Keyword,Mode]], !.
 
generate_code(beep, CodeOut) :-
    string_to_atom(Keyword, beep),
    CodeOut = [[Keyword,0.4, 640]], !.
     
generate_code(loop(C,T), CodeOut) :-
    generate_code(C,Code),
    append_n_times(Code,[],T,CodeOut), !.
     
generate_code(move_until_wall(forward), CodeOut) :-
    string_to_atom(Keyword, move_until_wall),
    CodeOut = [[Keyword]], !.
     
generate_code(move_until_wall(left), CodeOut) :-
    string_to_atom(Keyword1, turnLeft),
    string_to_atom(Keyword2, move_until_wall),
    Ninety is 90*(3.25 / 360),
    CodeOut = [[Keyword1,1.0,Ninety],[Keyword2]], !.
     
generate_code(move_until_wall(right), CodeOut) :-
    string_to_atom(Keyword1, turnRight),
    string_to_atom(Keyword2, move_until_wall),
    Ninety is 90*(3.25 / 360),
    CodeOut = [[Keyword1,1.0,Ninety],[Keyword2]], !.
 
generate_code(move_until_wall(backward), CodeOut) :-
    string_to_atom(Keyword1, turnRight),
    string_to_atom(Keyword2, move_until_wall),
    string_to_atom(Keyword3, turnLeft),
    OneEighty is 180*(3.25 / 360),
    CodeOut = [[Keyword1,1.0,OneEighty],[Keyword2],[Keyword3,1.0,OneEighty]], !.
 
generate_code(moonwalk(S), CodeOut) :-
    string_to_atom(Keyword, moonwalk),
    CodeOut = [[Keyword,S]], !.
     
%%%  MISC SUPPORT PREDICATES %%%
 
% Check if S is a sublist of L
sublist(S, L) :-
  append(_, L2, L),
  append(S, _, L2).
   
% Builds a list of N instances of item C, then returns the result in L
append_n_times(_,L,0,L):- !.
append_n_times(C,L,N,Result):-
    append(L,C,NewL),
    NewN is N-1,
    append_n_times(C,NewL,NewN,Result).
  
% Flatten a list of lists
flatten2([], []) :- !.
flatten2([L|Ls], FlatL) :-
    !,
    flatten2(L, NewL),
    flatten2(Ls, NewLs),
    append(NewL, NewLs, FlatL).
flatten2(L, [L]).
About the Author: Justin
A 34 year old Software Engineer in Seattle, WA with a love for coding, music, video games, and the great outdoors.
Author Website: http://www.justinmangue.com

Leave a Reply

Your email address will not be published. Required fields are marked *