Tag Archive for code

nlp.pl

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
% Natural Language Parser for Scribbler II Robot
% by Justin Mangue, 2013
%
% Uses DCG grammar parsing to parse natural language input into Python code, to be executed on a Scribbler II robot.
%
% References used:
% * "The Art of Prolog", Sterling & Shapiro, 1986.
 
% ParseToCode is the main routine.  Takes a sentence and converts it to a list of executable python code.
% Call with parseToCode([sentence,as,a,list],Status,Code).
parseToCode(Sentence, Status, CodeListOut) :-
    compound_sentence(ParseList, Sentence, []),
    Status = valid,
    generate_code_list(ParseList, [], CodeListOut),
    !. 
     
parseToCode(Sentence, Status, CodeOut) :-
    + compound_sentence(_, Sentence, []),
    Status = invalid_sentence,
    CodeOut = 'null',
    !.
     
%%% GRAMMAR DEFINITIONS %%%
     
% Compound Sentence is the top level.  Consists of an optional address statement followed by one or more simple sentences joined by a connective.
compound_sentence(Compound) -->
    optionally_address(robot),
    simple_sentence(Command),
    connective(and),
    compound_sentence(Sentence),
    { append([Command], [Sentence], Compound_NotFlat) },
    { flatten2(Compound_NotFlat, Compound) }.
 
compound_sentence(Command) -->
    optionally_address(robot),
    simple_sentence(Command).
     
% A simple sentence is a command phrase, possibly followed by an optional repetition clause.
simple_sentence([loop(C,T)]) -->
    command_phrase(C),
    (to_number(T), [times] ; to_number_eng(T)).
     
simple_sentence([Simple]) -->
    command_phrase(Simple).
   
% Command phrases are the basic command-level structure.  Most consist of an action and some sort of argument.
command_phrase(move(D,S)) -->
  action(go),
  direction(D),
  optional(for),
  unit_to_seconds(S).
   
command_phrase(move(D,S)) -->
  action(go),
  unit_to_seconds(S),
  direction(D).
   
command_phrase(move(forward,S)) -->
  action(go),
  unit_to_seconds(S).
   
command_phrase(move(D,3)) -->
  action(go),
  direction(D).
   
command_phrase(turn(D,S)) -->
  action(turn),
  optional(to),
  (optional(the) ; optional(your)),
  direction(D),
  unit_to_seconds(S).
 
command_phrase(turn(D,S)) -->
  action(turn),
  optional(to),
  (optional(the) ; optional(your)),
  direction(D),
  { S is 90*(3.25 / 360) }.  % 90 degrees by default
   
command_phrase(turn(right,D)) -->
  action(turn),
  direction(around),
  { D is 180 * (3.25 / 360) }.  % 180 degree turn
   
command_phrase(turn(Dir,D)) -->
  action(spin),
  direction(around),
  optional(to),
  (optional(the) ; optional(your)),
  direction(Dir),
  { D is 3.25 }.  % 360 degree turn
   
command_phrase(turn(right,D)) -->
  action(spin),
  direction(around),
  { D is 3.25 }.  % 360 degree turn
     
command_phrase(pic(Mode)) -->
    action(take),
    adposition(a),
    photomode(Mode),
    object(picture).
     
command_phrase(pic(0)) -->  % b&w pic by default, for speed reasons
    action(take),
    adposition(a),
    object(picture).
     
command_phrase(wait(S)) -->
    action(wait),
    optional(for),
    unit_to_seconds(S).
     
command_phrase(wait(3.0)) -->
    action(wait).  
     
command_phrase(beep) -->
    action(beep).
     
command_phrase(moonwalk(S)) -->
    action(moonwalk),
    optional(for),
    unit_to_seconds(S).
     
command_phrase(moonwalk(4.0)) -->
    action(moonwalk).
     
command_phrase(move_until_wall(D)) -->
    command_phrase(move(D,_)),
    condition(until),
    [you],
    condition(encounter),
    object(wall).
     
% Vocabulary/synonym definitions
     
action(go) --> [go] ; [move] ; [drive] ; [roll] ; [scoot].
action(turn) --> [turn] ; [rotate] ; [swivel].
action(spin) --> [spin].
action(take) --> [take] ; [obtain] ; [get] ; [snap].
action(wait) --> [wait] ; [pause] ; [stop].
action(beep) --> [beep].
action(moonwalk) --> [moonwalk].
 
direction(forward) --> [forward] ; [forwards] ; [ahead] ; [up].
direction(backward) --> [backward] ; [backwards] ; [back].
direction(left) --> [left] ; [counter-clockwise] ; [counter],[clockwise].
direction(right) --> [right] ; [clockwise].
direction(around) --> [around] ; [in],adposition(a),[circle].
 
adposition(a) --> [a] ; [one].
 
condition(until) --> [until].
condition(encounter) --> [encounter] ; [reach] ; [sense] ; [hit].
 
photomode(0) --> [grayscale] ; [greyscale] ; [gray] ; [grey] ; [black],[and],[white] ; [black],[&],[white].
photomode(1) --> [color].
 
object(picture) --> [photo] ; [picture] ; [pic] ; [snapshot].
object(wall) --> [a],[wall] ; [the],[wall] ; [an],[obstacle] ; [something].
 
pronoun(robot) --> [robot] ; [scribbler].
 
connective(and) --> [and] ; [then] ; [comma] ; [and], [then] ; [comma], [then] ; [comma], [and], [then].
 
% Optional form of address
optionally_address(robot) -->
    (optional(robot) ; optional(scribbler)),
    optional(comma),
    optional(please).
     
% Allow a DCG word to be optional
optional(X) --> [X] ; [].
 
% Number parsing predicates
% English number recognition from 0.0 - 9999.9
 
to_number(N) --> num(N1), [point], digit(N2), { N is N1 + (0.1 * N2) }.
to_number(N) --> num(N).
 
to_number_eng(1) --> [once].
to_number_eng(2) --> [twice].
to_number_eng(3) --> [thrice].
 
num(0) --> [zero].
num(N) --> xxxx(N).
num(N) --> xxx(N).
num(N) --> xx(N).
num(N) --> digit(N).
 
num(N) --> [N], { number(N) }.
 
xxxx(N) --> digit(D), [thousand], xxx(N1), { N is D*1000+N1 }.
xxx(N) --> digit(D), [hundred], rest_xxx(N1), { N is D*100+N1 }.
 
rest_xxx(0) --> [].
rest_xxx(N) --> [and], xx(N).
rest_xxx(N) --> xx(N).
 
xx(N) --> digit(N).
xx(N) --> teen(N).
xx(N) --> tens(T), rest_xx(N1), { N is T+N1 }.
 
rest_xx(0) --> [].
rest_xx(N) --> digit(N).
 
digit(1) --> [one].
digit(2) --> [two].
digit(3) --> [three].
digit(4) --> [four].
digit(5) --> [five].
digit(6) --> [six].
digit(7) --> [seven].
digit(8) --> [eight].
digit(9) --> [nine].
 
teen(10) --> [ten].
teen(11) --> [eleven].
teen(12) --> [twelve].
teen(13) --> [thirteen].
teen(14) --> [fourteen].
teen(15) --> [fifteen].
teen(16) --> [sixteen].
teen(17) --> [seventeen].
teen(18) --> [eighteen].
teen(19) --> [nineteen].
 
tens(20) --> [twenty].
tens(30) --> [thirty].
tens(40) --> [forty].
tens(50) --> [fifty].
tens(60) --> [sixty].
tens(70) --> [seventy].
tens(80) --> [eighty].
tens(90) --> [ninety].
 
% Scribbler Unit conversions
% All of the Myro commands for Scribbler are expressed in seconds, so conversions of other unit types to seconds are required.
 
% Seconds -> Seconds
unit_to_seconds(S) -->
    to_number(S), { + S = 1 }, [seconds] ;
    to_number(S), { S = 1 }, [second].
     
% Milliseconds -> Seconds
unit_to_seconds(MS) -->
    to_number(S), { + S = 1 }, { MS is (S / 1000) }, [milliseconds] ;
    to_number(S), { S = 1 }, { MS is (S / 1000) },[millisecond].
 
% Feet -> Seconds
unit_to_seconds(S) -->
    to_number(Feet), { + Feet = 1 }, { S is Feet * 2.05 }, [feet] ;
    to_number(Feet), { Feet = 1 }, { S is 2.05 }, [foot].
 
% Inches -> Seconds
unit_to_seconds(S) -->
    to_number(Inches), { + Inches = 1 }, { S is Inches * (2.05 / 12) }, [inches] ;
    to_number(Inches), { Inches = 1 }, { S is (2.05 / 12) }, [inch].
     
% Degrees -> Seconds
unit_to_seconds(S) -->
    to_number(Degrees), { + Degrees = 1 }, { S is Degrees * (3.25 / 360) }, ([degrees] ; [º]) ;
    to_number(Degrees), { Degrees = 1 }, { S is (3.25 / 360) }, ([degree] ; [º]).
     
%%% CODE GENERATION %%%
% The top level structure is a code list, which is a list of one or more code fragments to be executed.
% This part is pretty messy, but is needed to handle passing instructions back to Python from Prolog.
 
generate_code_list([], CodeList, CodeList).
generate_code_list([H|T], CodeList, CodeListOut) :-
    generate_code(H, CodeLineOut),
    append(CodeList, CodeLineOut, NewCodeList),
    generate_code_list(T, NewCodeList, CodeListOut).
 
generate_code(move(forward,S), CodeOut) :-
    string_to_atom(Keyword, forward),
    CodeOut = [[Keyword,1.0,S]], !.
 
generate_code(move(backward,S), CodeOut) :-
    string_to_atom(Keyword, backward),
    CodeOut = [[Keyword,1.0,S]], !.
 
generate_code(move(left,S), CodeOut) :-
    string_to_atom(Keyword1, turnLeft),
    string_to_atom(Keyword2, forward),
    Ninety is 90*(3.25 / 360),
    CodeOut = [[Keyword1,1.0,Ninety],[Keyword2,1.0,S]], !.
     
generate_code(move(right,S), CodeOut) :-
    string_to_atom(Keyword1, turnRight),
    string_to_atom(Keyword2, forward),
    Ninety is 90*(3.25 / 360),
    CodeOut = [[Keyword1,1.0,Ninety],[Keyword2,1.0,S]], !.
     
generate_code(turn(left,S), CodeOut) :-
    string_to_atom(Keyword, turnLeft),
    CodeOut = [[Keyword,1.0,S]], !.
     
generate_code(turn(right,S), CodeOut) :-
    string_to_atom(Keyword, turnRight),
    CodeOut = [[Keyword,1.0,S]], !.
     
generate_code(wait(S), CodeOut) :-
    string_to_atom(Keyword, wait),
    CodeOut = [[Keyword,S]], !.
     
generate_code(pic(Mode), CodeOut) :-
    string_to_atom(Keyword, takePhoto),
    CodeOut = [[Keyword,Mode]], !.
 
generate_code(beep, CodeOut) :-
    string_to_atom(Keyword, beep),
    CodeOut = [[Keyword,0.4, 640]], !.
     
generate_code(loop(C,T), CodeOut) :-
    generate_code(C,Code),
    append_n_times(Code,[],T,CodeOut), !.
     
generate_code(move_until_wall(forward), CodeOut) :-
    string_to_atom(Keyword, move_until_wall),
    CodeOut = [[Keyword]], !.
     
generate_code(move_until_wall(left), CodeOut) :-
    string_to_atom(Keyword1, turnLeft),
    string_to_atom(Keyword2, move_until_wall),
    Ninety is 90*(3.25 / 360),
    CodeOut = [[Keyword1,1.0,Ninety],[Keyword2]], !.
     
generate_code(move_until_wall(right), CodeOut) :-
    string_to_atom(Keyword1, turnRight),
    string_to_atom(Keyword2, move_until_wall),
    Ninety is 90*(3.25 / 360),
    CodeOut = [[Keyword1,1.0,Ninety],[Keyword2]], !.
 
generate_code(move_until_wall(backward), CodeOut) :-
    string_to_atom(Keyword1, turnRight),
    string_to_atom(Keyword2, move_until_wall),
    string_to_atom(Keyword3, turnLeft),
    OneEighty is 180*(3.25 / 360),
    CodeOut = [[Keyword1,1.0,OneEighty],[Keyword2],[Keyword3,1.0,OneEighty]], !.
 
generate_code(moonwalk(S), CodeOut) :-
    string_to_atom(Keyword, moonwalk),
    CodeOut = [[Keyword,S]], !.
     
%%%  MISC SUPPORT PREDICATES %%%
 
% Check if S is a sublist of L
sublist(S, L) :-
  append(_, L2, L),
  append(S, _, L2).
   
% Builds a list of N instances of item C, then returns the result in L
append_n_times(_,L,0,L):- !.
append_n_times(C,L,N,Result):-
    append(L,C,NewL),
    NewN is N-1,
    append_n_times(C,NewL,NewN,Result).
  
% Flatten a list of lists
flatten2([], []) :- !.
flatten2([L|Ls], FlatL) :-
    !,
    flatten2(L, NewL),
    flatten2(Ls, NewLs),
    append(NewL, NewLs, FlatL).
flatten2(L, [L]).

scribpro.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# coding=latin-1
#
# File: scribpro.py
# by Justin Mangue
#
# Description:
# This is a script that enables use of a Prolog natural language parsing component to control a Scribbler II robot
# over bluetooth.  Use in sync with nlp.pl.
#
# Dependencies:
# Python 2.7.4         http://www.python.org/getit/     
# PySwip 0.2.3         https://code.google.com/p/pyswip/
# PySpeech             https://code.google.com/p/pyspeech/
# Myro 2.9.5           http://myro.roboteducation.org/download/
# Swi-Prolog 6.2.6     http://www.swi-prolog.org/Download.html
 
# IMPORTS
from sys import exit
from myro import *
from pyswip import Prolog
import speech as pyspeech
 
# GLOBAL SETTINGS
verNum = '0.6'              # ScribPro Version Number
scribblerPort = 'COM5'      # Scribbler Bluetooth Port
prologFile = 'nlp.pl'       # Prolog file to consult
debug = 'on'                # Debug mode, if enabled, shows detailed prolog parse information
inputMode = "text"          # Input in text mode by default
outputMode = "text"         # Output to text by default
 
# CLASSES
class PrologResult(object):
  def __init__(self, prologcall, status, pythoncode):
     self.prologcall = prologcall
     self.status = status
     self.pythoncode = pythoncode
 
# FUNCTIONS
 
def strClean(string):
    """ strClean(str) -- converts "A string like This" into a list of lowercase atoms
        i.e. [a,string,like,this] for use in Prolog. also converts commas to "and"s """
    finalstring = "["
    loweredstring = string.lower()
    exclude = '!"#$%&'()*+-./:;<=>?@[\]^_`{|}~'
    for c in exclude:
        loweredstring = loweredstring.replace(c,"")   
    for ch in loweredstring:
        if ch == ' ':
            finalstring = finalstring + ","
        elif ch == ',':
            finalstring = finalstring + ",comma"
        #elif ch == u'xb0' or ch == '°':
        #    finalstring = finalstring + ",degrees"
        else:
            finalstring = finalstring + ch
    return finalstring + "]"
        
def parse(inStr):
    """parse(str) -- cleans the user input and then throws it at Prolog for analysis"""
    codeOut = "null"
    sentence = strClean(inStr)
    prologCall = 'parseToCode(' + sentence + ', Status, CodeOut).'
    for soln in prolog.query(prologCall, maxresult=1):
        statusOut = ''.join(soln["Status"])
        if statusOut == 'valid':
            codeOut = buildMultiCode(soln["CodeOut"])
    return PrologResult(prologCall,statusOut,codeOut)
 
def buildCode(prologterms):
    """converts a [instruction, param1, param2, ...] list into Python-exec-friendly "instruction(param1,param2,...)" functor format"""
    parameters = [str(item) for item in prologterms]
    if len(parameters) > 2:
        codeOut = parameters[0] + '('
        for x in range(len(parameters)-2):
            codeOut = codeOut + parameters[x+1] + ', '
        codeOut = codeOut + parameters[len(parameters)-1] + ')'
    elif len(parameters) == 2:
        codeOut = parameters[0] + '(' + parameters[1] + ')'
    else:
        codeOut = parameters[0] + '()'
    return codeOut
 
def buildMultiCode(instructions):
    """converts a list of [instruction, param1, param2] codes into a list of Python-exec-friendly "instruction(param1,param2,...)" strings
       i.e. buildMultiCode([('forward',['1.0','3.0']),('stop',[])]) -> ['forward(1.0, 3.0)', 'stop()']"""
    multiCodeOut = []
    for x in instructions:
        line = buildCode(x)
        multiCodeOut.append(line)
    return multiCodeOut
 
 
def execute(code):       # potential security concerns here!
    """executes multiple lines of python script in sequence"""
    for line in code:
        if type(line) is list:
            execute(line)
        else:
            exec line
 
def toggle_inputMode(mode):
    """toggles between text and voice mode"""
    if mode == "text":
        print "Now activating voice input."
        return "voice"
    else:
        print "Switching back to text-input mode."
        return "text"
 
def toggle_outputMode(mode):
    """toggles between text and voice mode"""
    if mode == "text":
        print "Now activating voice output."
        return "voice"
    else:
        print "Switching back to text-only output mode."
        return "text"
 
def toggle_debugMode():
    """toggles between debug mode being on/off"""
    if debug == "on":
        print "Disabling debug mode."
        return "off"
    else:
        print "Enabling debug mode."
        return "on"
 
# addon robot commands
def takePhoto(mode):
    """Take and display a photo in the specified color mode. 2=color(fast), 1=color, 0=gray"""
    if mode == 2:
        pic = takePicture("jpeg-fast")
    elif mode == 1:
        pic = takePicture("color")
    else:
        pic = takePicture("gray")
    show(pic,"Scribby Cam")
    return
 
def move_until_wall():
    """Repeatedly moves forward in small increments until wall is sensed"""
    while not wall():
        forward(1.0, 0.7)
    return
 
def moonwalk(time):
    """Moonwalk backwards for time"""
    while timeRemaining(time):
        forward(.25,.1)                        
        backward(1,.3)                         
 
# MAIN
def main():
    # global variable references
    global debug
    global prolog
    global inputMode
    global outputMode
     
    # initialize the robot
    print "***************** ScribPro v" + verNum + " *****************"
    init(scribblerPort)                          
    print "Scribbler II found on bluetooth (" + scribblerPort + ")."
     
    # instantiation of Prolog interface
    prolog = Prolog()
    prolog.consult(prologFile)
    print "Prolog has been initialized."
    print "Loaded " + prologFile + " into SWI-Prolog!"
 
    print "Starting in " + inputMode + " input mode. ['voice' to toggle]"
    print "Starting in " + outputMode + " output mode. ['sound' to toggle]"
    print "*************************************************"
     
    # main routine
    while(1):
        # grab a line of input, either text or voice
        if inputMode == "voice":
            try:
                inStr = pyspeech.input("nAwaiting voice command. (Ctrl-C to enter text)")
                print "Voice command: " + inStr + "n"
            except KeyboardInterrupt:
                inStr = raw_input("Type in a command: ")
        else:
            inStr = raw_input("nEnter a command: ")
 
        # parse the input and behave appropriately
        if (inStr == 'quit' or inStr == 'exit'):
            print "Exiting..."
            exit(0)
        elif inStr == 'reload':
            newprolog = Prolog()
            newprolog.consult(prologFile)
            prolog = newprolog
            print "Reloaded " + prologFile + " into Prolog!"
        elif inStr == 'voice':
            inputMode = toggle_inputMode(inputMode)
        elif inStr == 'sound':
            outputMode = toggle_outputMode(outputMode)
        elif inStr == 'debug':
            debug = toggle_debugMode()
        else:
            Result = parse(inStr)
            if Result.status == 'valid':
                if outputMode == "voice":
                    pyspeech.say("Okay")
                print "Okay."
                execute(Result.pythoncode)
            else:
                if outputMode == "voice":
                    errorMsg = "I don't understand " + inStr
                    pyspeech.say(errorMsg)
                print "I don't understand "" + inStr + ""."
                     
            # Print detailed debug information
            if debug == "on":  
                print "nProlog query executed:", Result.prologcall
                print "Status:", Result.status
                print "CodeOut:", Result.pythoncode
 
if __name__ == "__main__":
    main()

Prolog implementation of a C-lite parser

Wrote a Clite parser– in Prolog!
Read more